Le projet de thèse s’appuie sur ces précédents travaux et a pour objectif d’appliquer la métrologie à l’étude des problèmes électrolytiques. Pour ce faire, il sera nécessaire, dans un premier temps, d’ajuster les bancs de PEA et de PWP en fonction de cette nouvelle problématique. Cela impliquera notamment le développement de cellules composées d’un trinôme anode/électrolyte liquide/cathode (par exemple), représentatif des matériaux utilisés dans les batteries. Le choix des matériaux d’électrodes et d’électrolytes sera fait après discussion avec le partenaire IC2MP. Il sera essentiel de reconfigurer les bancs pour appliquer une tension continue (DC) afin d’étudier les transferts de charges électriques et leur organisation au sein de ces batteries modèles lors des phases de charge et de décharge temporelles. Dans une deuxième étape, il sera nécessaire de développer des outils de déconvolution mathématique pour extraire la distribution des charges électriques à partir des signaux de mesure. Enfin, il faudra approfondir l’interprétation de la physicochimie du transfert de charges aux interfaces, étudier la dynamique du transfert de charges, analyser et comprendre le vieillissement des mécanismes au fil des cycles de fonctionnement, examiner l’influence de la nature chimique des électrodes et des électrolytes, évaluer l’impact de l’état de surface et de la géométrie des électrodes, et apprécier l’influence de la nature du champ électrique.
Archives : Emploi
stage M2/Ingénieur: Étude numérique des forces hydrodynamiques agissant sur des particules non-sphériques
Simulations numériques directes d’ondes internes en milieu stratifié
Ce projet s’inscrit dans un contexte d’études sur les ondes de gravité en milieu stratifié, telles qu’on peut les rencontrer dans l’atmosphère et les océans. Dans ce type de milieu géophysique où la masse volumique du milieu dépend de la profondeur, des ondes de gravités internes peuvent apparaître au sein du fluide, loin de la surface libre. Ces ondes peuvent transporter de l’énergie sur de grandes distances, affectant ainsi les mouvements à grande échelle au sein de l’écoulement, ainsi que le transport de chaleur, des sédiments, des nutriments et des polluants dans les océans. Lorsque la stratification de masse volumique n’est pas uniforme, les ondes internes peuvent présenter des phénomènes ondulatoires similaires à des résonances. Des « escaliers thermohalins » se forment ainsi, constitués par des profils de densité périodiques spatialement.
Cette situation, qui peut notamment s’observer dans l’océan Artique, a été mise en évidence et caractérisée expérimentalement par [1,2,3,4]. Les expériences réalisées par [1] (voir la figure ci-dessous) montrent notamment qu’il existe, du fait de la stratification, des « bandes interdites » pour les ondes de gravités internes, c’est à dire des plages de fréquences sur lesquelles la propagation des ondes internes ne peut s’effectuer du fait la stratification périodique de densité du fluide. Ces résultats suggèrent que le transport d’énergie peut être profondément affecté par la présence de stratifications périodiques dans les fluides géophysiques.
Study of mass transfers between fractures and the matrix containing them
The subject of this thesis is the understanding, modelling and numerical simulation of the transport of solutes, whether passive or reactive, in porous, permeable, heterogeneous and/or fractured media. The most immediate field of application is geological media, often with environmental concerns (sensitivity to contaminants, pollution clean-up), but geothermal energy also falls into this category if the solute is heat. When numerical simulation is based on an Eulerian approach such as the finite difference method, numerical difficulties may arise in taking into account rapid transient diffusive exchanges between matrix and fracture. One solution is to use a Lagrangian approach such as the particle method.
Saturated Open-pore Foams for Innovative Tribology in Turbomachinery (SOFITT)
The work to be done is to reinforce the work started by Alaa Eddine Ennazii, PhD student funded by the ANR SOFITT. It proposes on a larger scale the development of a mechanical behavior model to predict the macroscale response, in particular the deformations. The numerical simulations of hydraulic and mechanical behavior of porous media face a numerical challenge. The difficulty concerns the consideration of the geometric deformations. On a larger scale, an open-pore foam filled with an elastomer can be seen as a deformable porous medium saturated with fluid. Deformation of the porous medium is accompanied by fluid flow, which applies additional stresses to the solid matrix. This coupling between deformation of porous medium and flow, or poroelasticity, has given rise to a very large literature since the pioneering work of Terzaghi and Biot [Terzaghi, 1943; Biot, 1941; Wang, 2000; Coussy, 2003]. However, there are few experiments on model poroelastic systems that allow the fundamental hypotheses to be tested [Scherer, 1996; Hebraud et al., 2000; Dawson et al., 2008]. Moreover, these studies are mainly concerned with the small deformation regime and few have studied the dynamics of highly deformed poroelastic objects, as for the open-pore foam filled with an elastomer. The mechanical behavior model will be developped by using the software COMSOL which has the Porous Media Flow Module in which there are two poroelastic models: Small Strain Poroelasticity and Large Strain Poroelasticity. The starting point for building the model will be the tutorial called biot-poroelasticity-483 available on the website https://www.comsol.fr/model/. The two poroelastic models will be tested with the database on the compression of open-pore foams filled or not with an elastomer.
Etude des échanges entre les fractures et la matrice les contenant
Travail à réaliser :
Le travail projeté ici comporte plusieurs volets.
a) Examen d’une situation canonique, où les échanges diffusifs entre fracture/matrice jouent un rôle important, se prêtant à un traitement entièrement analytique : fracture plane traversant une couche de matrice homogène. On pourra déterminer le temps d’établissement du régime asymptotique, formuler le modèle homogénéisé qui s’applique alors, et déterminer ses coefficients effectifs selon les paramètres du soluté, de la fracture et de la matrice. L’approche permettra aussi la description complète du transitoire pré–asymptotique, à partir d’une condition initiale arbitraire. On examinera aussi quelles généralisations sont possibles dans le cadre de l’approche analytique (notamment, matrice hétérogène, anisotrope, stratifiée, …).
b) Poursuite du travail par simulations numériques directes. Dans un premier temps, on pourra conserver la configuration de (a), qui permettra une confrontation avec les résultats analytiques. On pourra ensuite complexifier la configuration en introduisant divers types de désordre concernant la fracture ou les propriétés de la matrice. Le cas réaliste d’une fracture avec une ouverture variable sera particulièrement intéressant, puisque les changements de section provoquent des échanges convectifs de soluté entre la fracture et la matrice. Cet effet a un impact fort (mais différent de l’effet des échanges diffusifs dans le cas précédent) sur les propriétés de transport macroscopiques.
c) Finalement, un modèle réduit sera examiné, où la fracture n’est plus représentée que par une surface sans épaisseur assortie de propriétés effectives (voir Fig. 3). Ceci constitue la brique élémentaire des modèles DFN (Discrete Fracture Network) utilisés pour représenter un milieu fracturé à l’échelle globale. La confrontation avec (a) et (b) permettra de le valider, et d’identifier les aspects à soigner particulièrement dans les développements ultérieurs. Par exemple, on sait déjà que les échanges diffusifs transitoires rapides entre matrice et fracture présentent de grandes difficultés de prise en compte numériques quand la plage d’échelle spatiale augmente.
Interaction d’une barre de flot avec la bathymétrie : Etude numérique des mécanismes de diffusion, diffraction, réfraction et absorption de l’onde de marée dans un fleuve
Dans ce projet, nous souhaitons explorer l’influence de la bathymétrie sur la propagation de la barre de flot. Des expériences sont actuellement en cours avec notre nouvelle méthode de génération de mascaret en laboratoire. Les données ainsi acquises vont
permettre de valider la mise en place d’un modèle numérique construit sur les méthodes SPH. L’outil DualPhysics sera utilisé dans le cadre de ce projet (https://dual.sphysics.org ). Il fournit tous les outils nécessaires à une modélisation 2D/3D d’un mascaret se développant dans un canal avec un fond variable. L’avantage des méthodes SPH est d’être efficace pour simuler des écoulements complexes présentant de grandes déformations ]. Cette approche Lagrangienne sera complétée par une méthode Eulérienne sur grille cartésienne en 2D. Le suivi de la surface libre par une méthode LevelSet et la discrétisation de type frontière immergée pour la prise en compte de l’obstacle à l’ordre deux confère à ce code de bonnes propriétés en termes de précision et d’efficacité. Nous avons d’ailleurs montré récemment que la simulation numérique directe d’un écoulement transcritique est en accord avec les résultats expérimentaux obtenus dans les canaux.
stage M2 ou Ingénieur: Étude des jets débouchant dans un écoulement transverse
Dans de nombreuses applications comme les confluences de rivières, les déversements de canal d’amenée ou des ouvrages plus spécifiques comme les passes à poisson, les jets débouchant dans un écoulement transverse sont des écoulements caractéristiques générant des structures tourbillonnaires et des déviations d’écoulement, mais il existe peu de règle de dimensionnement dans les écoulements à surface libre pour connaître leur pénétration et leur signature dans l’écoulement principal. Dans le cadre des activités avec l’Office Français de la Biodiversité et du pôle éco hydraulique OFB/IMFT/Pprime, nous cherchons à définir ces critères de dimensionnement.
Le sujet de stage concerne la mécanique des fluides fondamentale et les interactions entre un jet et un écoulement transverse pour des écoulements à surface libre. L’étudiant devra tout d’abord, à partir de la littérature et de l’analyse par similitude, définir les grandeurs
caractéristiques de ce type d’écoulement en partant des applications réelles et des mesures de terrain (figure 1). À partir de ces dimensions caractéristiques, il cherchera ensuite à simuler à partir du code de calcul StarCCM+ des configurations canoniques pour comprendre notamment l’effet du rapport de quantité de mouvement et les trajectoires de tels jets.
Ce travail se poursuivra en septembre 2024 dans le cadre d’une thèse.
Validation des modèles physiques locaux de transport sédimentaire par comparaison simulation numérique expérience de laboratoire
L’étude proposée ici repose sur la comparaison de modèles numériques dédiées au transport sédimentaire pour identifier des modèles physiques locaux de transport sédimentaire. L’objectif est de comparer les résultats issus de simulations numériques sous OpenFoam à des mesures obtenues en laboratoire de transport sédimentaire à des échelles locales en temps et en espace. Ces mesures expérimentales ont été réalisées en configurations stationnaire et instationnaire pour différentes caractéristiques de sédiments. Des mesures de la réponse du lit sédimentaire, du taux d’érosion et des conditions hydrodynamiques (vitesses et hauteurs) ont été acquises et sont disponibles à partir des travaux de thèse financés par l’OFB et démarrés en Octobre 2022.Cette base de données expérimentales servira à la comparaison des résultats issus de modèles numériques développés sous OpenFoam : SediFoam et SedFoam. Le premier code testé, SediFoam, couple une modélisation eulérienne pour le fluide, gérée avec le logiciel OpenFOAM, à une représentation Lagrangienne discrète pour les particules de sédiments, via le code LAMMPS (Devaux, 2018 ; Shi et Sakai, 2022 ; Lu et al., 2023). L’outil permet d’appréhender différemment la quantification du transport, en fournissant un suivi individuel des grains de matière. Le second code, SedFoam, repose sur un solveur d’écoulement biphasique tridimensionnel. Dans cette approche, la phase sédimentaire est modélisée comme un continuum et des lois constitutives doivent être prescrites pour les contraintes sédimentaires (Chassagne et al., 2023 ; Ghzayel, 2023). L’originalité de ce travail consiste à passer de l’échelle laboratoire où différents essais ont été menés pour caractériser l’érosion à une grande échelle sur laquelle différentes études de terrain sont menées dans le cas de la thèse en cours sur l’étude du transport sédimentaire en milieu instationnaire. L’objectif du post doctorant sera de paramétrer les lois d’érosion et de transport en reproduisant les expériences laboratoire par des simulations numériques pour pouvoir ensuite alimenter des simulations numériques à plus grande échelle, réalisées avec Télémac.