The post-doctoral work will consist in examining, by means of atomic-scale simulations, bi-metallic Cu/Ag multilayers in
which different types of semi-coherent interfaces can coexist. The recruited person will have to study the global response of the whole system and identify new elementary mechanisms involved in the formation and extension of mechanical twins during plastic deformation for systems with one or several interfaces. Special attention will be given to the role of the misfit interfacial dislocations mesh. For these systems containing several millions of atoms, classical molecular dynamics calculations will be performed (LAMMPS code) using the embedded-atom method interatomic potentials. Calculations will be mainly performed on local or regional computers; an application for access to national resources (GENCI) will also be made. Depending on the profile of the recruited person, it will be considered to assess the influence of strain rate using accelerated molecular dynamics techniques, and/or Nudged Elastic Band (NEB) calculations.
