Post-doctoral position: Atomic scale simulations of twins-interfaces interaction in bi-metallic Cu/Ag multilayers

The post-doctoral work will consist in examining, by means of atomic-scale simulations, bi-metallic Cu/Ag multilayers in
which different types of semi-coherent interfaces can coexist. The recruited person will have to study the global response of the whole system and identify new elementary mechanisms involved in the formation and extension of mechanical twins during plastic deformation for systems with one or several interfaces. Special attention will be given to the role of the misfit interfacial dislocations mesh. For these systems containing several millions of atoms, classical molecular dynamics calculations will be performed (LAMMPS code) using the embedded-atom method interatomic potentials. Calculations will be mainly performed on local or regional computers; an application for access to national resources (GENCI) will also be made. Depending on the profile of the recruited person, it will be considered to assess the influence of strain rate using accelerated molecular dynamics techniques, and/or Nudged Elastic Band (NEB) calculations.

Postdoctoral position: Experimental Analysis of a PEMFC Composed of Innovative Oxide Catalysts

Starting date: 1st October 2022 no later than 1st January 2023 Duration: 18 months
Location: LEMTA – 54000 Nancy

Net salary per month: 2100 €

Contact: Applications (CV, letter of motivation) should be sent to: Sophie Didierjean – sophie.didierjean[AT]univ-lorraine.fr
And Anthony Thomas – anthony.thomas[AT]univ-poitiers.fr

Context

To prepare the next generation of proton exchange membrane fuel cell (PEMFC) for automotive applications, the question of substituting critical raw materials like Pt group metals (PGMs) is mandatory for many reasons. Among them, the cost and the availability of strategic raw materials such as PGMs only on restricted areas on earth make addressing their substitution very urgent. The project “InnOxiCat” (Innovative Oxide Catalysts for next PEMFC generation) address these issues with the objectives of (i) building knowledge on convenient structures and compositions of non-PGM materials for fuel cell cathode where the sluggish oxygen reduction reaction (ORR) occurs, (ii) synthesizing the materials and characterizing their physicochemical and electrochemical properties and (iii) for fuel cell, reaching higher performance than the state of the art of non-PGM materials.

Project

The objective of the post-doctoral project is to analyze the influence of the new electrode composition and architecture on the performances of a fuel cell, and to optimize the operating conditions. To reach this goal, the most promising catalytic compositions developed by the partners of the “InnOxiCat” project will be tested at the global and at the local scale to determine the more suitable gas flow rates, relative humidity and cell temperature to reach the best performances and longer lifetime. Membrane electrode assembly (MEA) will be built and tests will be conducted using a segmented and instrumented cell (25 cm2). This cell will be used for global MEA characterizations, but the measurement of the local current densities and the local electrochemical characterizations (polarization curves and electrochemical impedance spectroscopy) will give a better understanding of the link of the electrochemical performances of the carbon-supported catalyst with the local mass transport limitations, and therefore with the operating conditions. By applying Accelerated Stress Tests (AST) and repeated start-up and shutdown tests, the local information collected using the segmented cell will be used to analyze the local degradations and therefore the durability of the new catalyst materials.

Skills recommended: The candidate should have knowledge of electrochemistry, if possible applied to the fuel cell field, and be comfortable with experimental studies. Knowledge of heat and material transfer would be a plus.

Job offer – Postdoctoral position: Experimental study of a free liquid surface interacting with a non-thermal plasma.

Projet de recherche

Les décharges plasmas en contact avec des liquides constituent une solution prometteuse dans de nombreux domaines de recherche comme la synthèse de nanomatériaux, la dépollution, la synthèse chimique ou les applications biomédicales. De nombreuses études sont conduites pour comprendre

la nature de linteraction entre plasma et liquide et en particulier par diagnostics optiques d’émission et dabsorption. Il est important didentifier la surface liquide lorsque de tel diagnostics sont utilisés car les gradients de concentration despèces peuvent être important : à pression

atmosphérique, les électrons solvatés provenant dun plasma ont une distance de pénétration de quelques nm dans une solution aqueuse. La forme de la surface plasma/liquide est fortement influencée par les phénomènes électro-hydrodynamiques dus à la présence de charges despace et dun champ électrique. Cela se manifeste par une protubérance ou un creux sur la surface du liquide. En général, de limagerie est utilisée pour identifier la frontière entre plasma et liquide.

Cependant, celle-ci nest pas facilement observable si la variation spatiale est trop petite (<1 mm)

ou si elle est tridimensionnelle. La forme de surface liquide est importante car elle influence la répartition spatiale du champ électrique et elle définit la surface d’échange entre plasma et liquide.

Nous proposons dadapter la méthode de Free synthetic schlieren surface (FS-SS) pour mesurer la forme de cette surface liquide. Bien que la méthode ait montré sa capacité à l’étude des interactions plasma-liquide, des verrous empêchent dexploiter pleinement les résultats et des élaborations sont nécessaires.

Le principal objectif du projet est de développer une méthode de mesure de surface libre (basée sur la FS-SS) adaptée à l’étude des plasmas en contact avec des liquides. Il est organisé en trois tâches. La première tâche consiste à élaborer une source plasma plus simple à étudier. La deuxième tâche, concerne lamélioration de la méthode FS-SS et son application à une décharge à courant continu. La dernière tâche concerne l’étude dune décharge nanoseconde en contact avec

des solutions aqueuses de glycérine avec la nouvelle méthode.

ACTIVITES PRINCIPALES

Concevoir le dispositif plasma hors équilibre en contact avec le liquide ;

Améliorer la méthode en travaillant sur le dispositif expérimental (optique) mais aussi le traitement des données ;

Caractériser un plasma froid ;

Etudier linteraction plasma-liquide ;

Traiter et interpréter les données ;

Présenter et valoriser les résultats obtenus.

COMPETENCES PRINCIPALES REQUISES

Compétences opérationnelles :

Doctorat dans le domaine de la physico-chimie des plasmas froids ou de la mécanique des fluides ;

Expérimentateur autonome, en particulier sur des dispositifs optiques ;

Programmer sur le logiciel Matlab ou en python ;

Communication en anglais.