MARX David
ENSIP, Bat. B17
6, rue Marcel DORE
TSA 41105
86073 POITIERS Cedex 9
Tel: +33 (0)5 49 45 39 72
Fax: +33 (0)5 49 45 36 63
Equipe de recherche
Recherche
- Aeroacoustics, Flow-Duct acoustics, Acoustic liners
- Time-reversal for aeroacoustics
- Numerical simulation in aeroacoustics
![]() |
|
Flow in a periodic channel with an acoustic liner | Spatial channel with acoustic liner |
Job offers:
- Stage M2 2025 : Adjoint-based optimization of an acoustic liner Visit Page
- PhD Thesis 2025 : CFD simulations of wall-bounded turbulent flows with acoustic liners : Visit page
PhD Thesis 2024 : 3D identification of aeroacoustic sources in wind tunnels :Visit pageStage M2 – 2021 : Investigation of the self-sustaining process of turbulence by resolvent analysisThèse -2021: Aeroacoustics and numerical simulationPostdoc – 2021 – Computational Fluid Dynamics
Enseignement
- International Master in turbulence Lille-Poitiers (https://lmfl.cnrs.fr/master-international-en-turbulence/)
Course on signal processing. Download the course here . - ENSIP EAT3, cours d’Aéroacoustique. Partie sur les guides d’onde:
Cours 1 – propagation en conduite
Cours 2 – sources : cas du rotor
Cours 3 – rayonnement
Cours 4 – revêtements acoustiques
Sélection de publications
Marx D, Margnat F, Bailliet H, Prax C, Qiu Z, Valière J-C, Uncoupled multimodal wave reflection from guide termination with different flanges: Experimental and numerical investigation, Acta Acustica 8 (2024) 38. doi : https://doi.org/10.1051/aacus/2024015
Zhou Y, Diaz M, Marx D, Marchiano R, Prax C, Valeau V, Localizing aeroacoustic sources in complex geometries: A hybrid method coupling 3D microphone array and time-reversal, J. Sound Vib. 584 (2024) 118452. doi : https://doi.org/10.1016/j.jsv.2024.118452
Marx D, Sebastian R, Fortuné V, Simulation of instability and sound production in a turbulent channel flow with an acoustic liner, J. Sound Vib. 573 (2024) 118223. doi: https://doi.org/10.1016/j.jsv.2023.118223
Marx D, Developed spatial turbulent channel flow simulation for acoustic wave propagation, Computers and Fluids 245, 105586 (2022). doi: https://doi.org/10.1016/j.compfluid.2022.105586
Sebastian R, Marx D, Fortuné V, Numerical simulation of a turbulent channel flow with an acoustic liner, J. Sound Vib. 456, 306-330 (2019). doi: https://doi.org/10.1016/j.jsv.2019.05.020
Rakotoarisoa I, Marx D, Valeau V, Prax C, Array processing for the localisation of noise sources in hot flows, Mechanical Systems and Signal Processing 116, 160-172 (2019). doi: https://doi.org/10.1016/j.ymssp.2018.06.038
Marx D, A piecewise linear contour to avoid critical points in inviscid flow stability analyses, Computers and Fluids 172, 1-7 (2018). doi: https://doi.org/10.1016/j.compfluid.2018.06.018
Marx D, Numerical Computation of a lined duct instability using the linearized Euler equations, AIAA J. 53 (8), 2379-2388 (2015). http://dx.doi.org/10.2514/1.J053746
Rakotoarisoa I, Fisher J, Valeau V, Marx D, Prax C, Brizzi L, Time-domain delay-and-sum beamforming for time-reversal detection of intermittent acoustic sources in flows, J. Acoust. Soc. Am. 136(5) 2675-2686 (2014). http://dx.doi.org/10.1121/1.4897402
Nana C, Marx D, Prax C, Fortuné V, Hybrid aeroacoustic computation of a low Mach number non-isothermal shear layer, Computers and Fluids 93, 30-40 (2014). http://dx.doi.org/10.1016/j.compfluid.2014.01.006
Marx D, Aurégan Y, Effect of turbulent eddy viscosity on the unstable surface mode above an acoustic liner, J. Sound Vib. 332(15) 3803-3820 (2013). http://dx.doi.org/10.1016/j.jsv.2013.02.005
Padois T, Prax C, Valeau V, Marx D, Experimental localization of an acoustic sound source in a wind-tunnel flow by using a numerical time-reversal technique, J. Acoust. Soc. Am. 132(4) 2397-2407 (2012).
http://dx.doi.org/10.1121/1.4747015
Marx D, A piecewise linear mean flow model for studying stability in a lined channel, J. Sound Vib. 331 (16), 3809-3823 (2012). http://dx.doi.org/10.1016/j.jsv.2012.04.008
Marx D, Aurégan Y, Bailliet H, Valière J-C, PIV and LDV evidence of hydrodynamic instability over a liner in a duct with flow, J. Sound Vib. 329, 3798-3812 (2010). doi: http://dx.doi.org/10.1016/j.jsv.2010.03.025
Mao X, Yu Z, Jaworski AJ, Marx D, PIV studies of coherent structures generated at the end of a stack of parallel plates in a standing wave acoustic field, Exp. Fluids 45, 833-846 (2008).
Marx D, Bailliet H, and Valière J-C, Analysis of the acoustic flow at the abrupt change of section in an acoustic waveguide using PIV and POD, Acta Acustica united with Acustica 94, 54-65 (2008).
Marx D, Mao X, and Jaworski A, Measurements on the coupling between a loudspeaker and an acoustic resonator at high amplitudes, Applied Acoustics 67(5) (2006), 402-419.
Marx D, Blanc-Benon Ph, Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator, J. Acoust. Soc. Am. 118 (5) (2005), 2993-2999.
Marx D, Blanc-Benon Ph, Numerical calculation of the temperature difference in a thermoacoustic stack plate, Cryogenics 45(3), 163-172 (2005).
Marx D, Blanc-Benon Ph, Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator, C. R. Mecanique 32, 867-874 (2004).
Marx D, Blanc-Benon Ph, Numerical simulation of the stack/heat exchanger coupling in a thermoacoustic refrigerator, AIAA Journal 42, 1338-1347 (2004).