Séminaire du Pr. Andriy Zahorulko : Experimental and numerical studies of buffer impulse dry gas seals

Experimental and numerical studies of buffer impulse dry gas seals

For more than 30 years, gas seal technology has been a key factor in ensuring the safety and reliability of centrifugal pumps, compressors, agitators and rotary equipment in the chemical and petrochemical industries. In view of changing environmental regulations, dry gas lubrication ensures the purity of the pumped liquid medium and zero emissions of toxic substances. The non-contact function of the mechanical seal is achieved thanks to the special topography of one of the surfaces of the seal rings, which creates a gasdynamic opening force during shaft rotation, eliminating friction. Buffer dry gas seals use a regulated inert buffer gas at a pressure of 1-2 bars above the process pressure to seal the process fluid from the atmosphere. At the same time, gas seals have a minimal temperature rise and lower energy consumption than liquid seals. And the global spread of non-contact seals with gas lubrication has led to a reduction in parasitic power losses due to friction and significant energy savings.

Among the double gasdynamic seals with radial arrangement of stages, the significant advantages of buffer impulse mechanical seals are distinguished by their non-contact operation mode and hydrostatic opening force provided by the shaft rotation and periodic impulse supplying of the cavities by feeders with the buffer medium. These seals are much easier to manufacture and reliable. Therefore, in these studies, using the CFD simulation, a thermohydrodynamic analysis of a buffer impulse dry gas seals were performed. Laminar air flow was considered as well as ideal gas law, and heat transfer through the solid surfaces of the seal rings. The transient problem of the flow during the circumferential interaction of the rotor and stator gap regions was solved, which made it possible to simulate the dynamic process of supplying the buffer pressure to the cavities of the buffer impulse seal. The validity of the proposed numerical models was verified by the available experimental results on the leakages, the average temperature of the face surface of the floating ring at the exit from the seal and pressure pulsations in the cavities and on the inter-cavity land. An analysis was performed on the influence of the fixed gap size, the depth and number of cavities and the pressure difference between the buffer and sealed medium on the amplitude of pressure pulsations, the magnitude of the gap opening force, leakages and the surface average temperature of the floating ring at the exit from the seal, as well as pressure and temperature distribution along the circumference and radius of the sealing rings. The thermal and mechanical deformations of the rings and the dynamic coefficients of stiffness and damping of the buffer impulse seal were obtained.

Hydrogen flame behavior in constant volume bomb at sub-zero temperature

Storing hydrogen in liquid form increases its volumetric energy density, which facilitates transportation. If the confinement system of a hydrogen cryogenic tank fails, the liquid hydrogen (LH2) will vaporize and form low-temperature gaseous hydrogen (GH2). To prevent industrial risk during the storage and transportation of LH2 it is essential to characterize the flammable properties of a GH2-air cloud at low temperature. In particular, the flammability limits must be determined to ensure that the concentration of GH₂ remains below the level that could potentially lead to an explosion. Another fundamental property is the unstretch laminar burning velocity (LBV), which is intrinsic to the chemistry driving the flame propagation. Its determination has two major implications: (i) A comparison with the prediction of LBV from a kinetic model allows one to evaluate the reliability of different mechanisms (which are typically not designed to operate at low temperatures). (ii) LBV serves as a design criterion in numerous engineering applications and numerical models.
At present, only flammability limits for upward propagating flames in a tube are available (Karim et al. 1984), while laminar burning velocity (Ghosh et al. 2022) were measured within a burner for GH2-air at low temperature.
This study focus on the behavior of lean H2 mixture with air close to flammability limits as a function of temperature. We were able to design and operate a visually accessible constant volume combustion vessel to measure the impact of sub-zero temperature on flame structure. Our result highlight the influence of the mode of energy deposit on flammability limits by comparing 2 methods of arc ignition. Flame structure and over-pressure inside the vessel was recorded and showed for the first time how instabilities are impacted by the initial temperature.

Séminaire Équipe TriboLub : présentation du Professeur Andriy Zahorulko (Sumy State University, Ukraine)

Dans le cadre d’un projet Nadya financé par l’Institut Français d’Ukraine, la Cdefi et le Labex, nous accueillons le Professeur Andriy Zahorulko de Sumy State University en Ukraine au sein de l’Institut Pprime pour une période de 2 mois.

Il donnera un séminaire intitulé « Improving the sealing, lubrication, and balancing of centrifugal machine rotors with highly efficient seal and bearing designs » le 20 novembre 2025 à 14h dans la salle de réunion du D3 (1W68), batiment SP2MI H1.

Résumé et informations complémentaires: https://labex-interactifs.pprime.fr/le-labex-accueille-le-pr-andriy-zahorulko/

Insects meet wavelets: numerical modeling of flapping flight

Flying insects, spectacular little flapping machines with enormous evolutionary success, are an invaluable source of inspiration for a large, interdisciplinary community of scientists. In this talk I will show our latest results on the aerodynamics of houseflies (M. domestica) and dragonflies (P. flavescens) flight with broken wings, with a focus on the numerical aspects of this work. We combine wing wear experiments, in which we study how wing damage progresses over time, with state of the art numerical simulations of the aerodynamics of animals with broken wings. The numerical simulations are done with our in-house open-source solver WABBIT, which combines wavelet-based adaptivity with an efficient parallelization to exploit massively parallel supercomputers. It will be presented in some detail in this talk. From those high-fidelity data, we obtain a data-driven quasi-steady aerodynamic model, which, combined with the full-scale simulations, allows us to explain the energetic cost of flying with broken wings. This insight allows us to draw conclusions on the reserve animals are built with, which a potentially important guideline for the design of aerial robots, as well as an important factor for biological fitness.

Soutenance de thèse d’Ibrahim Diallo (Equipe TriboLub), le lundi 6 octobre à 10h

Résumé

La fonction des joints d’étanchéités radiaux segmentés est de limiter les fuites autour des roulements guidant les rotors des moteurs aéronautiques. Ce joint est composé de plusieurs segments en carbone graphite et de ressorts. Ces derniers maintiennent les segments en appui contre le rotor et le stator, ce qui permet au joint de s’adapter aux déplacements radiaux de ce premier tout en assurant un faible débit de fuite. Les contacts permanents entre les segments et les pièces mobiles entraînent leur usure mais, grâce à l’action des ressorts, les performances d’étanchéité sont maintenues tout au long de la durée de service.
L’objectif des travaux présentés est d’étudier le phénomène d’usure du carbone graphite afin de pouvoir proposer une méthode d’estimation de la durée de vie des segments. L’usure du carbone graphite génère une poudre fine qui joue le rôle de troisième corps. La poudre issue de l’usure sépare les surfaces en contact et agit comme un lubrifiant solide. Ainsi, toute estimation fiable de la durée de vie des segments implique une compréhension approfondie du comportement de cette poudre dans le contact. Des essais ont donc été réalisés sur des rhéomètres afin d’étudier dans un premier temps le comportement tribologique du matériau et son usure et dans une deuxième temps le comportement rhéologique de la poudre.
Ces essais ont permis de caractériser les couples de démarrage et le coefficient de frottement statique à différentes pressions de contact, ainsi que l’évolution du couple avec la vitesse. Les résultats ont mis en évidence que le couple de frottement dépend principalement de la pression de contact et faiblement de la vitesse de rotation. L’analyse de la topographie des surfaces a révélé la présence de deux mécanismes d’usure distincts : l’abrasion, prédominante au début de l’essai et l’adhésion, qui se manifeste plus tardivement. Durant l’essai, une couche se forme progressivement à l’interface de contact favorisant le glissement et réduisant l’usure. L’usure augmente néanmoins avec la pression de contact et la vitesse mais reste globalement faible, ce qui confirme que la poudre de graphite agit efficacement comme lubrifiant solide.
Pour les essais rhéologiques, des échantillons de poudre ont été obtenus par broyage et limage car la quantité de poudre issue de l’usure est trop faible. Ces essais ont permis d’identifier des propriétés rhéologiques telles que la masse volumique apparente, un indice de viscosité basé sur la comparaison avec des huiles siliconées de viscosité connue, la contrainte de rupture dans la masse et la contrainte de glissement à la paroi.
Finalement, la vitesse de l’usure a été déterminée à l’aide de la méthode des éléments discrets appliquée à un échantillon virtuel calibré sur les caractéristiques du carbone graphite.
Tous ces résultats constituent le socle sur lequel viendra s’appuyer une modélisation de la poudre dans le contact segment/rotor basée sur une équation de Reynolds généralisée capable de simuler toutes étapes du circuit tribologique (la production, la circulation et de l’éjection de la poudre).

Mots clés

Étanchéité dynamique, carbone graphite, usure, poudre, rhéologie

« Soot Properties and Maturation in Non-Premixed Laminar Hydrocarbon Flames from Multiwavelength Extinction and Emission Measurements »

Mitigating soot emissions from hydrocarbon combustion remains a critical environmental and health challenge. Adding hydrogen to hydrocarbons reduces soot formation but can also alter particle composition and toxicity. Accurate, non-intrusive soot characterization requires knowledge of its optical properties, particularly the absorption function E(m) and the particle maturity level. Although E(m) is often treated as constant, it varies both spectrally and spatially within the flame. By combining multi-wavelength absorption and emission measurements, spatial distributions of temperature, E(m), and soot volume fraction can be obtained. Experiments in laminar diffusion flames show that hydrogen addition to ethylene non-premixed flames decreases soot concentration and radiation, while higher oxygen indices enhance soot formation. Flame temperature is governed mainly by oxygen, and hydrogen promotes soot maturation toward more graphitic particles, especially along the flame centerline under high-oxygen conditions

Étude expérimentale et théorique de la turbulence d’ondes internes de gravité

La stratification en densité des fluides modifie profondément leur dynamique en permettant la propagation d’ondes internes de gravité dans leur volume. Leur description, et notamment le problème de la « turbulence stratifiée », est essentielle pour la modélisation de l’atmosphère et des océans. Il est en particulier proposé que la dynamique océanique à petite échelle résulte d’une turbulence d’ondes internes faiblement non-linéaire, sans que cette description n’ait pour l’instant pu être confirmée de manière définitive. Durant ce séminaire thèse, je vous présenterai nos travaux portant sur une étude à la fois expérimentale et théorique de la turbulence d’ondes internes de gravité.