6 mois

Stage M2 2026: Évaluation des pertes de charge et de l’hydrodynamique des prises d’eau de centrales pour des configurations angulaires.

[TheChamp-Sharing]
Sujet de stage M2 ou ingénieur, en mécanique des fluides expérimentale et numérique.

Application et Débouchés : Applications à des solutions hydrauliques
Outils et connaissances à utiliser : Mécanique des fluides, modélisation numérique,
techniques expérimentales
Nature du travail : expérience et numérique
Poursuite en thèse : potentiellement sur des sujets connexes

Laurent DAVID - Contacter
Guillaume BON - Contacter
Bâtiment H2, Institut Pprime, proche du Futuroscope

Autres offres d'emploi

Retour à la liste
12 months

POST-DOC (M/F) - Control by Machine Learning of bluff body wakes

At the CNRS-Laboratory PPRIME, based at the Futuroscope, this post-doctorate position is part of the French ANR COWAVE program between the laboratories PRISME in Orleans, Pprime in Poitiers, LHEEA in Nantes and the PSA automotive industry. This Post-Doc position concerns the Pprime contribution to the COWAVE project which aims the experimental exploration of closed-loop wake control strategies with mobile flaps in a water tunnel facility. Three-dimensional bluff-body wakes generate pressure drag and side forces and thus contribute significantly to the fuel consumption and pollutant emission of road vehicles. Despite this crucial impact and the numerous attempts to reduce harmful environmental effect of bluff body wakes by flow control it is still unclear what is the most efficient control strategy! In this context, the ANR project COWAVE addresses two fundamental aspects of wake control: - First, what kind of actuators are most efficient? While most closed-loop control strategies use viscous entrainment effects to actuate the shear layers in the wake, the exploitation of pressure forces produced by mobile deflectors could be an interesting alternative to be tested. - Second, for the implementation of closed-loop control, we want to test if control strategies obtained by machine learning techniques allow to obtain better efficiency and robustness than the more classical model-based approaches? The proposed Post-Doc position is part of the French ANR COWAVE program between the laboratories PRISME in Orleans, Pprime in Poitiers, LHEEA in Nantes and the PSA automotive industry. This Post-Doc position concerns the Pprime contribution to the COWAVE project which aims the experimental exploration of closed-loop wake control strategies with mobile flaps in a water tunnel facility. APPLY Follow link / Application Deadline : 12 March 2021 https://bit.ly/3qDG6Ml